

Getting Started with pyomo_simplemodel

The pyomo_simplemodel package is software for modeling
and solving optimization problems. This package is derived from
Pyomo [http://www.pyomo.org], and it defines the class SimpleModel
that illustrates how Pyomo can be used in a simple, less object-oriented
manner. Specifically, this class mimics the modeling style supported
by PuLP [https://github.com/coin-or/pulp]:

	Feature

	PuLP

	SimpleModel

	LP/MILP

	YES

	YES

	NLP/MINLP

	NO

	YES

	Column-wise

	YES

	NO

SimpleModel vs Pyomo

SimpleModel is not meant to serve as a replacement for Pyomo. While SimpleModel only represents problems with a simple, unstructured representation, Pyomo’s modeling components support structured, hierarchical models that are suitable for complex applications.

The following sections illustrate similarities and differences
between SimpleModel, PuLP and regular Pyomo models. First, the
knapsack problem is used to illustrate that these packages can be
used in a similar manner on simple applications. Next, the soda
can problem illustrates that SimpleModel can represent nonlinear
problems that cannot be modeled with PuLP. Finally, the newvendor
problem is used to illustrate three different modeling representations:
unstructured models, structured models and hierarchical models.
SimpleModel and PuLP have unstructured models, while Pyomo supports
all three modeling representations.

Contents:

	Comparing SimpleModel, PuLP and Pyomo
	Knapsack Problem

	SimpleModel Formulation

	PuLP Formulation

	Pyomo Formulation

	Modeling Nonlinear Problems
	Soda Can Problem

	SimpleModel Formulation

	Pyomo Formulation

	Unstructured, Structured and Block Formulations
	Newsvendor Problem

	SimpleModel Formulation

	PuLP Formulation

	Pyomo Formulations

	Installation

	Source Documentation
	SimpleModel

	Declaring Variables

Indices and tables

	Index

	Module Index

	Search Page

Acknowledgements

This software was supported in part by Sandia National Laboratories.
Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned subsidiary
of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Comparing SimpleModel, PuLP and Pyomo

This section illustrates differences between SimpleModel, PuLP
and regular Pyomo models on the knapsack problem. This problem
can be represented as a integer program, which all three of these modeling
tools can easily represent.

Knapsack Problem

The Knapsack Problem [https://en.wikipedia.org/wiki/Knapsack_problem]
considers the problem of selecting a set of items whose weight is
not greater than a specified limit while maximizing the total value
of the selected items. This problem is inspired by the challenge
of filling a knapsack (or rucksack) with the most valuable items
that can be carried.

A common version of this problem is the 0-1 knapsack problem,
where each item is distinct and can be selected once. Suppose there
are \(n\) items with positive values \(v_1, \ldots, v_n\)
and weights \(w_1, \ldots, w_n\). Let \(x_1, \ldots, x_n\)
be decision variables that can take values 0 or 1. Let W be the
weight capacity of the knapsack.

The following optimization formulation represents this problem as
an integer program:

\begin{equation*}
\begin{array}{ll}
 \max & \sum _{i=1}^{n} v_{i} x_{i} \\
 \textrm{s.t.} & \sum _{i=1}^{n} w_{i} x_{i}\leq W \\
 & x_{i}\in \{0,1\}
\end{array}
\end{equation*}
The following sections illustrate how this optimization problem can be
formulated with (1) SimpleModel, (2) PuLP, and (3) Pyomo.

SimpleModel Formulation

The following script executes the following steps to create and solve a knapsack problem:

	Import pyomo_simplemodel

	Construct a SimpleModel class

	Declare variables, the objective and the constraint

	Perform optimization

	Summarize the optimal solution

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

	# knapsack.py

from pyomo_simplemodel import *

v = {'hammer':8, 'wrench':3, 'screwdriver':6, 'towel':11}
w = {'hammer':5, 'wrench':7, 'screwdriver':4, 'towel':3}
limit = 14
items = list(sorted(v.keys()))

Create model
m = SimpleModel(maximize=True)

Variables
x = m.var('m', items, within=Binary)

Objective
m += sum(v[i]*x[i] for i in items)

Constraint
m += sum(w[i]*x[i] for i in items) <= limit

Optimize
status = m.solve('glpk')

Print the status of the solved LP
print("Status = %s" % status.solver.termination_condition)

Print the value of the variables at the optimum
for i in items:
 print("%s = %f" % (x[i], value(x[i])))

Print the value of the objective
print("Objective = %f" % value(m.objective()))

In this example, the model object m is used to manage the problem
definition. Decision variables are declared with the var()
method, the objective and constraint are added with the += operator,
and the solve() method is used to perform optimization. After
optimization, the solution is stored in the variable objects, and
the objective value can be accessed with using the objective()
method.

PuLP Formulation

The following script executes the same steps as above to create and solve a knapsack problem using PuLP:

knapsack-pulp.py

from pulp import *

v = {'hammer':8, 'wrench':3, 'screwdriver':6, 'towel':11}
w = {'hammer':5, 'wrench':7, 'screwdriver':4, 'towel':3}
limit = 14
items = list(sorted(v.keys()))

Create model
m = LpProblem("Knapsack", LpMaximize)

Variables
x = LpVariable.dicts('x', items, lowBound=0, upBound=1, cat=LpInteger)

Objective
m += sum(v[i]*x[i] for i in items)

Constraint
m += sum(w[i]*x[i] for i in items) <= limit

Optimize
m.solve()

Print the status of the solved LP
print("Status = %s" % LpStatus[m.status])

Print the value of the variables at the optimum
for i in items:
 print("%s = %f" % (x[i].name, x[i].varValue))

Print the value of the objective
print("Objective = %f" % value(m.objective))

This script is very similar to the SimpleModel script. Both
scripts declare a problem class that is used to declare variables,
the objective and constraint, and to perform optimization.

Pyomo Formulation

The following script executes the same steps as above to create and solve a knapsack problem using Pyomo:

knapsack-pyomo.py

from pyomo.environ import *

v = {'hammer':8, 'wrench':3, 'screwdriver':6, 'towel':11}
w = {'hammer':5, 'wrench':7, 'screwdriver':4, 'towel':3}
limit = 14
items = list(sorted(v.keys()))

Create model
m = ConcreteModel()

Variables
m.x = Var(items, within=Binary)

Objective
m.value = Objective(expr=sum(v[i]*m.x[i] for i in items), sense=maximize)

Constraint
m.weight = Constraint(expr=sum(w[i]*m.x[i] for i in items) <= limit)

Optimize
solver = SolverFactory('glpk')
status = solver.solve(m)

Print the status of the solved LP
print("Status = %s" % status.solver.termination_condition)

Print the value of the variables at the optimum
for i in items:
 print("%s = %f" % (m.x[i], value(m.x[i])))

Print the value of the objective
print("Objective = %f" % value(m.value))

This script is similar to the SimpleModel and PuLP scripts, but
Pyomo models are created with an object-oriented design. Thus,
elements of the optimization problem are declared with variable,
objective and constraint components, which are Pyomo objects. As
a consequence, the objective and constraint expressions reference
variable components within the model (e.g. m.x) instead of
variable objects directly (e.g. x). Thus, modeling
in Pyomo is more verbose (especially when long model names are
used).

Modeling Nonlinear Problems

This section illustrates differences between SimpleModel and regular
Pyomo models on a simple nonlinear problem. PuLP is omitted from
this comparison because it cannot represent nonlinear problems.

Soda Can Problem

Finding the optimal dimensions of a soda can is a simple nonlinear
optimization problem. We consider an idealized soda can that is
represented as a cylinder with radius r and height h. The
problem is to find the radius and height that minimizes the surface
area of the cylinder while keeping a fixed volume. Here, the surface
area of the cylinder approximates the amount of aluminum needed for
a soda can, so this problem can be used to predict the miminum amount of aluminum
needed to hold a given volume.

The surface area of a cylinder is

\[2 \pi r (r+h)\]

A standard soda can is 12 oz or 355 ml. Thus, we have the constraint

\[\pi r^2 h = 355\]

Thus, we have the following optimization representation for this problem:

 \begin{equation*}
 \begin{array}{ll}
 \min & 2 \pi r (r+h)\\
 \textrm{s.t. } & \pi r^2 h = 355\\
 & r \geq 0\\
 & h \geq 0
 \end{array}
 \end{equation*}
This is a nonlinear problem, so it cannot be formulated with PuLP.
The following sections illustrate how this optimization problem can
be formulated and solved with SimpleModel and Pyomo.

SimpleModel Formulation

The following script executes the following steps to create and solve the soda can problem:

	Import pyomo_simplemodel

	Construct a SimpleModel class

	Declare variables, the objective and the constraint

	Perform optimization

	Summarize the optimal solution

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	# sodacan.py

from pyomo_simplemodel import *
from math import pi

m = SimpleModel()

r = m.var('r', bounds=(0,None))
h = m.var('h', bounds=(0,None))

m += 2*pi*r*(r + h)
m += pi*h*r**2 == 355

status = m.solve("ipopt")

print("Status = %s" % status.solver.termination_condition)

print("%s = %f" % (r, value(r)))
print("%s = %f" % (h, value(h)))
print("Objective = %f" % value(m.objective()))

In this example, the model object m is used to manage the problem
definition. Decision variables are declared with the var()
method, the objective and constraint are added with the += operator,
and the solve() method is used to perform optimization. After
optimization, the solution is stored in the variable objects, and
the objective value can be accessed with using the objective()
method.

Pyomo Formulation

The following script executes the same steps as above to create and solve the soda can problem using Pyomo:

sodacan-pyomo.py

from pyomo.environ import *
from math import pi

m = ConcreteModel()

m.r = Var(bounds=(0,None))
m.h = Var(bounds=(0,None))

m.o = Objective(expr=2*pi*m.r*(m.r + m.h))
m.c = Constraint(expr=pi*m.h*m.r**2 == 355)

solver = SolverFactory('ipopt')
status = solver.solve(m)

print("Status = %s" % status.solver.termination_condition)

print("%s = %f" % (m.r, value(m.r)))
print("%s = %f" % (m.h, value(m.h)))
print("Objective = %f" % value(m.o))

This script is similar to the SimpleModel script, but
Pyomo models are created with an object-oriented design. Thus,
elements of the optimization problem are declared with variable,
objective and constraint components, which are Pyomo objects. As
a consequence, the objective and constraint expressions reference
variable components within the model (e.g. m.x) instead of
variable objects directly (e.g. x).

Unstructured, Structured and Block Formulations

This section illustrates differences between SimpleModel, PuLP and
regular Pyomo models on a problem with more complex structure. The
newsvendor problem is used to illustrate three different modeling
representations that are supported by these modeling tools:

	unstructured

	The model stores a list of objectives and constraints expressions.

	structured

	The model stores named objectives and constraints. Each of these named
components map index values to expressions.

	hierarchical

	The model stores named block components, each of which stores
named components, including variables, objectives and constraints.

Newsvendor Problem

The Newsvendor Problem [https://en.wikipedia.org/wiki/Newsvendor_model]
considers the problem of determining optimal inventory levels.
Given fixed prices and an uncertain demand, the problem is to determine
inventory levels that maximize the expected profit for the newsvendor.

The following formulation is adapted from Shapiro and Philpott [ShaPhi]. A
company has decided to order a quantity x of a product to satisfy
demand d. The per-unit cost of ordering is c, and if demand d is
greater than x, d>x, then the back-order penalty is b per unit. If
demand is less than production, d<x, then a holding cost h is
incurred for unused product.

The objective is to minimize the total cost: \(\max\left\{
(c-b)x+bd, (c+h)x-hd\right\}\). For example, suppose we have
\(c=1\), \(b=1.5\), \(h=0.1\), and \(d=50\).
Then the following figure illustrates the total cost:

[image: _images/newsvendor_totalcost.png]
In general, the ordering decision is made before a realization of
the demand is known. The deterministic formulation corresponds to
a single scenario taken with probability one:

\[\begin{split}\begin{array}{ll}
 \min_{x,y} & y\\
 \textrm{s.t.} & y \geq (c-b)x + b d\\
 & y \geq (c+h)x - h d\\
 & x \geq 0
\end{array}\end{split}\]

Now suppose we model the distribution of possible demands with
scenarios \(d_1, \ldots, d_K\) each with equal probability (\(p_k = 0.2\)).
Then the following formulation minimizes the expected value of the
total cost over these scenarios:

\begin{equation*}
\begin{array}{llll}
 \min_{x,y_1,\ldots,y_K} & \sum_k p_k y_k & & \\
 \textrm{s.t.} & y_k \geq (c-b)x + b d_k & k = 1,\ldots,K & \textit{(Demand is greater)}\\
 & y_k \geq (c+h)x - h d_k & k = 1,\ldots,K & \textit{(Demand is less)}\\
 & x \geq 0
\end{array}
\end{equation*}
This is a linear problem, so it can be formulated with
SimpleModel, PuLP and Pyomo.

Since the two constraints are indexed from \(1, \ldots, K\), we can
group them together into a single block, which itself is indexed
from \(1, \ldots, K\).

\[\begin{split}\begin{array}{lll}
 \min_{x,y_1,\ldots,y_K} & \sum_k p_k y_k & \\
 \textrm{s.t.} & \left\{\begin{array}{l}
 y_k \geq (c-b)x + b d_k\\
 y_k \geq (c+h)x - h d_k\\
 \end{array}\right\} & k = 1,\ldots,K\\
 & x \geq 0
\end{array}\end{split}\]

Below, we show formulations for SimpleModel, PuLP, and Pyomo. The
SimpleModel and PuLP models illustrate unstructured representations.
The first Pyomo formulation illustrates an unstructured representation,
where constraints are stored in a list. The second Pyomo formulation
illustrates a structured representation, which corresponds to the
first formulation above. The final Pyomo formulation illustrates
a hierarchical representation, using the Block component to
structure the model representation in a modular manner.

SimpleModel Formulation

The following script creates and solves a linear program for the newsvendor problem using SimpleModel:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

	# newsvendor.py

from pyomo_simplemodel import *

c=1.0
b=1.5
h=0.1
d = {1:15, 2:60, 3:72, 4:78, 5:82}

scenarios = range(1,6)

m = SimpleModel()
x = m.var('x', within=NonNegativeReals)
y = m.var('y', scenarios)

for i in scenarios:
 m += y[i] >= (c-b)*x + b*d[i]
 m += y[i] >= (c+h)*x - h*d[i]

m += sum(y[i] for i in scenarios)/5.0

status = m.solve("glpk")

print("Status = %s" % status.solver.termination_condition)

print("%s = %f" % (x, value(x)))
for i in y:
 print("%s = %f" % (y[i], value(y[i])))
print("Objective = %f" % value(m.objective()))

There are two key things to note about this model. First, the model
simply consists of a list of constraints. Second, the y variable
is indexed to represent the total cost for the different scenarios.

PuLP Formulation

The following script creates and solves a linear program for the newsvendor problem using PuLP:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

	# newsvendor-pulp.py

from pulp import *

c=1.0
b=1.5
h=0.1
d = {1:15, 2:60, 3:72, 4:78, 5:82}

scenarios = range(1,6)

M = LpProblem("Newsvendor")

x = LpVariable('x', lowBound=0)
y = LpVariable.dicts('y', scenarios)

for i in scenarios:
 M += y[i] >= (c-b)*x + b*d[i]
 M += y[i] >= (c+h)*x - h*d[i]

M += sum(y[i] for i in scenarios)/5.0

M.solve()

print("Status = %s" % LpStatus[M.status])

print("%s = %f" % (x.name, value(x.varValue)))
for i in scenarios:
 print("%s = %f" % (y[i].name, y[i].varValue))
print("Objective = %f" % value(M.objective))

As with the SimpleModel formulation, the model consists of a list
of constraints, and the y variable is indexed.

Pyomo Formulations

The following script creates and solves a linear program for the
newsvendor problem using Pyomo:

newsvendor-pyomo1.py

from pyomo.environ import *

c=1.0
b=1.5
h=0.1
d = {1:15, 2:60, 3:72, 4:78, 5:82}

scenarios = range(1,6)

M = ConcreteModel()
M.x = Var(within=NonNegativeReals)
M.y = Var(scenarios)

M.c = ConstraintList()
for i in scenarios:
 M.c.add(M.y[i] >= (c-b)*M.x + b*d[i])
 M.c.add(M.y[i] >= (c+h)*M.x - h*d[i])

M.o = Objective(expr=sum(M.y[i] for i in scenarios)/5.0)

solver = SolverFactory('glpk')
status = solver.solve(M)

print("Status = %s" % status.solver.termination_condition)

print("%s = %f" % (M.x, value(M.x)))
for i in scenarios:
 print("%s = %f" % (M.y[i], value(M.y[i])))
print("Objective = %f" % value(M.o))

This model uses the ConstraintList component to store a list of constraints, and the y variable
is indexed. Thus, this model provides an unstructured representation that is similar to models generated with SimpleModel and PuLP.

The following script uses Pyomo to create and solve the newsvendor problem, using a structured representation:

newsvendor-pyomo2.py

from pyomo.environ import *

c=1.0
b=1.5
h=0.1
d = {1:15, 2:60, 3:72, 4:78, 5:82}

scenarios = range(1,6)

M = ConcreteModel()
M.x = Var(within=NonNegativeReals)
M.y = Var(scenarios)

def greater_rule(M, i):
 return M.y[i] >= (c-b)*M.x + b*d[i]
M.greater = Constraint(scenarios, rule=greater_rule)

def less_rule(M, i):
 return M.y[i] >= (c+h)*M.x - h*d[i]
M.less = Constraint(scenarios, rule=less_rule)

def o_rule(M):
 return sum(M.y[i] for i in scenarios)/5.0
M.o = Objective(rule=o_rule)

solver = SolverFactory('glpk')
status = solver.solve(M)

print("Status = %s" % status.solver.termination_condition)

print("%s = %f" % (M.x, value(M.x)))
for i in scenarios:
 print("%s = %f" % (M.y[i], value(M.y[i])))
print("Objective = %f" % value(M.o))

The named constraint components greater and less define
two groups of constraints for the model, each of which has the same
mathematical form. These named components provide a structured
representation for these constraints.

Finally, the following script uses Pyomo to create and solve this problem, using a hierarchical representation:

newsvendor-pyomo3.py

from pyomo.environ import *

c=1.0
b=1.5
h=0.1
d = {1:15, 2:60, 3:72, 4:78, 5:82}

scenarios = range(1,6)

M = ConcreteModel()
M.x = Var(within=NonNegativeReals)

def b_rule(B, i):
 B.y = Var()
 B.greater = Constraint(expr=B.y >= (c-b)*M.x + b*d[i])
 B.less = Constraint(expr=B.y >= (c+h)*M.x - h*d[i])
 return B
M.b = Block(scenarios, rule=b_rule)

def o_rule(M):
 return sum(M.b[i].y for i in scenarios)/5.0
M.o = Objective(rule=o_rule)

solver = SolverFactory('glpk')
status = solver.solve(M)

print("Status = %s" % status.solver.termination_condition)

print("%s = %f" % (M.x, value(M.x)))
for i in scenarios:
 print("%s = %f" % (M.b[i].y, value(M.b[i].y)))
print("Objective = %f" % value(M.o))

A block is added for each index \(k =
1,\ldots,K\). Each block contains a variable y, and the
corresponding constraints that define the value of y.

Note that the block component b is indexed in this formulation
while the y variable is indexed in the other formulations above.
Block components allow Pyomo to support a modular modeling framework
where data, variables and constraints can be
represented together for each index value. There
are several advantages of this approach:

	This model structure is explicit, and it can be exploited by decomposition-based optimization solvers (e.g. the progressive hedging solver in Pyomo).

	Extending and refining models is simpler with blocks. For example, if a multi-dimensional index was needed for this problem, then only the block b would need to be modified to reflect that.

	ShaPhi

	
	Shapiro and A. Philpott. A Tutorial on Stochastic Programming. 2007. (weblink) [http://www2.isye.gatech.edu/people/faculty/Alex_Shapiro/TutorialSP.pdf]

Installation

This package can be installed from the GitHub repository using pip as follows:

pip install git+https://github.com/Pyomo/pyomo_simplemodel

Once installed this package can be imported as follows:

import pyomo_simplemodel

Source Documentation

SimpleModel

	
class pyomo_simplemodel.SimpleModel(maximize=False)

	This class illustrates how Pyomo can be used in a simple, less
object-oriented manner. Specifically, this class mimics the
modeling style supported by PuLP [https://github.com/coin-or/pulp].

This class contains a Pyomo model, and it includes methods that
support a simple API for declaring variables, adding objectives
and constraints, and solving the model. Optimization results
are stored in the variable objects, which are returned to the
user.

For example, the following model minimizes the surface area of
a soda can while constraining its volume:

from pyomo_simplmodel import *
from math import pi

m = SimpleModel()

r = m.var('r', bounds=(0,None))
h = m.var('h', bounds=(0,None))

m += 2*pi*r*(r + h)
m += pi*h*r**2 == 355

This model can be solved with the IPOPT solver:

status = m.solve("ipopt")
print("Status = %s" % status.solver.termination_condition)

The optimum value and decision variables can be easily accesed:

print("%s = %f" % (r, value(r)))
print("%s = %f" % (h, value(h)))
print("Objective = %f" % value(m.objective()))

Notes

This class illustrates the basic steps in formulating
and solving an optimization problem, but it is not meant to
serve as a replacement for Pyomo. Pyomo models supports a much
richer set of modeling components than simple objectives and
constraints. In particular, Pyomo’s Block component supports
the expression of hierarchical models with nested structure.
This class only supports a simple, flat optimization problems.

	
constraint(i=1)

	Return the i-th constraint

	Parameters

	i (int) – The constraint index, which defaults to 1.

	Returns

	An object that defines a constraint

	Return type

	Pyomo constraint object

	
constraints()

	A generator that iterates through all constraints in the model.

	Yields

	Pyomo constraint object – An object that defines a constraint

	
display()

	Display the values in the model

	
objective(i=1)

	Return the i-th objective

	Parameters

	i (int) – The objective index, which defaults to 1.

	Returns

	An object that defines an objective

	Return type

	Pyomo objective object

	
pprint()

	Print the equations in the model

	
solve(name, *args, **kwargs)

	Optimize the model using the named solver.

	Parameters

	
	name (str) – The solver name

	*args – A variable list of arguments.

	**kwargs – A variable list of keyword arguments.

Notes

The arguments and keyword arguments are the same as supported by Pyomo
solver objects.

	
suffix(name)

	Declare a suffix with the specified name. Suffixes are values
returned by the solver, which are typically associated constraints.

	Parameters

	suffix (str) – The suffix that is returned from the solver.

	
var(*args, **kwds)

	Declare a variable.

	Parameters

	
	*args – The first argument is a string for the variable name used by Pyomo.
The remaining arguments are assumed to be index sets for the
variable.

	**kwargs – The keyword arguments are the same as the keyword arguments
supported by the Pyomo Var component.

	Returns

	If the variable is not indexed, then the return type
is a single Pyomo variable object. If the variable is
indexed, then the return type is a dictionary of Pyomo
variable objects.

	Return type

	Variable object

Declaring Variables

By default, model variables are assumed to be unbounded real values.
In practice, it is often necessary to specify a more limited set
of values. For example, suppose a variable x assumes integer
values in the range 1 to 7. Then the following declaration would be used:

x = m.var('x', bounds=(1,7), within=Integers)

The bounds keyword specifies the lower and upper bounds for the
variable. The within keyword indicates the feasible domain for
the variable: the set of feasible values that the variable may
assume. A variety of objects are defined by Pyomo to specify
feasible domains, including:

	Binary

	The set of boolean values

	Boolean

	The set of boolean values

	Integers

	The set of integer values

	NegativeIntegers

	The set of negative integer values

	NegativeReals

	The set of negative real values

	NonNegativeIntegers

	The set of non-negative integer values

	NonNegativeReals

	The set of non-negative real values

	NonPositiveIntegers

	The set of non-positive integer values

	NonPositiveReals

	The set of non-positive real values

	PercentFraction

	The set of real values in the interval [0,1]

	PositiveIntegers

	The set of positive integer values

	PositiveReals

	The set of positive real values

	Reals

	The set of real values

	UnitInterval

	The set of real values in the interval [0,1]

Index

 C
 | D
 | O
 | P
 | S
 | V

C

 	
 	constraint() (pyomo_simplemodel.SimpleModel method)

 	
 	constraints() (pyomo_simplemodel.SimpleModel method)

D

 	
 	display() (pyomo_simplemodel.SimpleModel method)

O

 	
 	objective() (pyomo_simplemodel.SimpleModel method)

P

 	
 	pprint() (pyomo_simplemodel.SimpleModel method)

S

 	
 	SimpleModel (class in pyomo_simplemodel)

 	
 	solve() (pyomo_simplemodel.SimpleModel method)

 	suffix() (pyomo_simplemodel.SimpleModel method)

V

 	
 	var() (pyomo_simplemodel.SimpleModel method)

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Getting Started with pyomo_simplemodel

 		
 Comparing SimpleModel, PuLP and Pyomo

 		
 Knapsack Problem

 		
 SimpleModel Formulation

 		
 PuLP Formulation

 		
 Pyomo Formulation

 		
 Modeling Nonlinear Problems

 		
 Soda Can Problem

 		
 SimpleModel Formulation

 		
 Pyomo Formulation

 		
 Unstructured, Structured and Block Formulations

 		
 Newsvendor Problem

 		
 SimpleModel Formulation

 		
 PuLP Formulation

 		
 Pyomo Formulations

 		
 Installation

 		
 Source Documentation

 		
 SimpleModel

 		
 Declaring Variables

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_images/newsvendor_totalcost.png
100

80

20

8 8 ¢]

_static/ajax-loader.gif

